- Introduction
- 1. Current Focus
2. Recommender Systems
- 2.1. Gradient Boosting
- 2.2. TF-IDF
- 2.3. Cross Encoders
- 2.4. SentenceTransformers
- 2.5. Collaborative Filtering
- 2.6. Evaluation
- 3. AB Testing
- 3.1. Examples
- 3.2. Power Analysis
- 4. LLMs
- 4.1. Fine-tuning
- 4.2. Useful Models
- 4.3. Encoder vs Decoder
- 4.4. Contextualized Recommendations
- 5. Miscellaneous
- 5.1. Bradley-Terry Model
- 5.2. Setting up WSL
- 5.3. To Read
- 5.4. Packages
- 5.5. Skills
- 5.6. Hash Collisions
- 6. Identities
- 6.1. Sigmoid
- 6.2. Statistics
- 7. Papers
- 7.1. Weinberger 2009 - Hashing for Multitask Learning
- 7.2. Rendle 2009 - Bayesian Personalized Ranking
- 7.3. Burges 2010 - RankNET to LambdaMART
- 7.4. Schroff 2015 - FaceNET
- 7.5. Covington 2016 - Deep NNs for Youtube Recs
- 7.6. Schnabel 2016 - Recs as Treatments
- 7.7. Bateni 2017 - Affinity Clustering
- 7.8. Guo 2017 - DeepFM
- 7.9. Hamilton 2017 - GraphSAGE
- 7.10. Ma 2018 - Entire Space Multi-Task Model
- 7.11. Kang 2018 - SASRec
- 7.12. Reimers 2019 - Sentence-BERT
- 7.13. Yi 2019 - LogQ Correction for In Batch Sampling
- 7.14. Zhao 2019 - Recommending What to Watch Next
- 7.15. Lee 2020 - Large Scale Video Representation Learning
- 7.16. He 2020 - LightGCN
- 7.17. Lewis 2020 - Retrieval Augmented Generation
- 7.18. Gao 2021 - SimCSE
- 7.19. Weng 2021 - Contrastive Representation Learning
- 7.20. Dao 2022 - Flash Attention
- 7.21. Zou 2021 - PLM Based Ranking in Baidu Search
- 7.22. Tunstall 2022 - SetFit
- 7.23. Rafailov 2023 - Direct Preference Optimization
- 7.24. Blecher 2023 - Nougat
- 7.25. Dong 2023 - MINE Loss
- 7.26. Liu 2023 - Meaning Representations from Trajectories
- 7.27. Klenitskiy 2023 - BERT4Rec vs SASRec
- 7.28. Singh 2023 - Semantic IDs for Recs
- 7.29. Borisyuk 2024 - GNN at LinkedIn
- 8. NLP Course
- 9. Database Course
- 9.1. Lecture 1
- 9.2. Lecture 2
- 9.3. Lecture 3